Search results for "Glass epoxy"
showing 3 items of 3 documents
Applicability Range of the One-Parameter Ply Plasticity Model for Prediction of the Nonlinear Response of Laminates
2005
A one-parameter lamina plasticity model is applied to predict the nonlinear deformation of an E-glass / epoxy cross-ply composite laminate under quasi-static uniaxial tensile loading at different angles to the material orthotropy axes. It is shown that the laminate theory yields accurate results within the plastic strain range covered in unidirectional continuous-fibre reinforced composite tests that are used to determine the plasticity model parameters.
A comparative study of fatigue behaviour of flax/epoxy and glass/epoxy composites
2012
Experimental investigations on flax and glass fabrics reinforced epoxy specimens, i.e. FFRE and GFRE, submitted to fatigue tests are presented in this paper. Samples having [0/90]3S and [±45]3S stacking sequences, with similar fibre volume fractions have been tested under tension–tension fatigue loading. The specific stress-number of cycles to failure (S–N) curves, show that for the [0/90]3S specimens, FFRE have lower fatigue endurance than GFRE, but the [±45]3S FFRE specimens offer better specific fatigue endurance than similar GFRE, in the studied life range (<2 × 10^6). Overall, the three-stage stiffness degradation is observed in all cases except for [0/90]3S FFRE specimens, which prese…
Experimental Investigation and Finite Element Analysis of Dynamic Behavior and Damage of Glass/Epoxy Tubular Structures
2011
This paper presents finite element analysis (FEA) of static and dynamic tests of thick filament wound glass/epoxy tubes. The first part involves the validation of elastic properties and identification of damage initiation and its development in dynamic tests. The results of FEA of the dynamic tests without damage appeared satisfactory. An impact model, including material property degradation, is used for damage prediction. The simulated damage is compared with that obtained experimentally. The sizes of projected and cumulated surfaces are of the same order of magnitude as in the experimental measurements.